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Abstract
Novikov algebras were introduced in connection with the Poisson brackets of
hydrodynamic-type and Hamiltonian operators in formal variational calculus.
Pseudo-Riemannian Novikov algebras denote Novikov algebras with non-
degenerate invariant symmetric bilinear forms. In this paper, we find that
there is a remarkable geometry on pseudo-Riemannian Novikov algebras, and
give a special class of pseudo-Riemannian Novikov algebras.

PACS numbers: 02.20.−a, 02.10.−v, 47.20.−k

1. Introduction

Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic-
type [1–3] and Hamiltonian operators in formal variational calculus [4–9]. There has been
much progress in the study of Novikov algebras [10–20]. A Novikov algebra A is a vector
space over a field F with a bilinear product (x, y) �→ xy satisfying

(xy)z − x(yz) = (yx)z − y(xz), (1)

(xy)z = (xz)y (2)

for any x, y, z ∈ A. Novikov algebras are a special class of left symmetric algebras. Left
symmetric algebras are non-associative algebras obeying equation (1). They arise from the
study of affine manifolds, affine structures and convex homogeneous cones [21–25]. A
fermionic Novikov algebra was introduced as a left-symmetric algebra with anti-commutative
right multiplication operators: an algebra is a fermionic Novikov algebra if its product satisfies
equation (1) and

(xy)z = −(xz)y. (3)

The commutator of a left-symmetric algebra A, i.e.,

[x, y] = xy − yx, (4)
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defines a Lie algebra g(A), which is called the underlying Lie algebra of A. The underlying
Lie algebra is said to admit a left-symmetric structure, or an affine structure. An affine
structure on a Lie algebra g with Lie product [·, ·] is a bilinear product (x, y) �→ xy satisfying
equations (1) and (4). Furthermore, if the product satisfies equation (2) (or equation (3)), we
say that g admits a Novikov (or fermionic Novikov) structure. Let g be a two-step nilpotent
Lie algebra, i.e.,

[x, [y, z]] = 0, ∀ x, y, z ∈ g.

Then the bilinear product on g defined by

xy = 1
2 [x, y]

is both a Novikov structure and a fermionic Novikov structure on g. Also there are other
Novikov and fermionic Novikov structures. In fact, let g be a Lie algebra of dimension 4 with
a basis e1, e2, e3, e4 satisfying

[e2, e4] = e1, [e4, e3] = e2.

It is easy to see that the bilinear product on g defined by

e2e4 = −e3e3 = e1, e4e3 = e2, e4e4 = e3

is not a Novikov structure but a fermionic Novikov structure on g and the bilinear product on
g defined by

e2e4 = −e3e3 = e1, e3e4 = 2e4e3 = −2e2, e4e4 = e3

is not a fermionic Novikov structure but a Novikov structure on g.
A pseudo-Riemannian connection is a pseudo-metric connection such that the torsion

is zero and parallel translation preserves the bilinear form on the tangent spaces [26].
The corresponding structure on the algebra A is a non-degenerate symmetric bilinear form
f : A × A → F satisfying

f (xy, z) + f (y, xz) = 0 (5)

for any x, y, z ∈ A. If the algebra A is a (fermionic) Novikov algebra, then (A, f ) is called a
pseudo-Riemannian (fermionic) Novikov algebra.

In this paper, we show that the underlying Lie algebra of a pseudo-Riemannian Novikov
algebra is a pseudo-Riemannian Lie algebra, which was first introduced in [27] and strongly
related to pseudo-Riemannian Poisson manifolds [28] with a compatible pseudo-metric. In
view of lack of examples, we give a class of pseudo-Riemannian Novikov algebras.

The paper is organized as follows. In section 2, we show that the underlying Lie algebra of
a pseudo-Riemannian Novikov algebra is the Lie algebra obtained by linearizing the Poisson
structure at a point of a Poisson manifold with a compatible pseudo-metric and a certain
condition on the Levi-Civita contravariant connection. In section 3, we give the classification
of pseudo-Riemannian Novikov algebras (A, f ) with dim AA = dim A − 1 over the complex
field C. Based on the discussion in the previous sections, we get some conclusions in
section 4.

2. Pseudo-Riemannian Novikov algebras

In this section, the algebras are of finite dimension and over R. A Lie algebra g with Lie product
[·, ·] is called a pseudo-Riemannian Lie algebra if there is a bilinear product (x, y) �→ xy on
g satisfying

[x, y] = xy − yx, [xz, y] + [x, yz] = 0
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and a non-degenerate symmetric bilinear form f satisfying

f (xy, z) + f (y, xz) = 0

for any x, y, z ∈ g. Furthermore, if f is positive definite, g is called a Riemann–Lie algebra.
The following are some important applications of pseudo-Riemannian Lie algebras [28–30].

(i) If g is a pseudo-Riemannian Lie algebra, then there is a pseudo-metric 〈, 〉 on the dual
g∗ endowed with its linear Poisson structure π for which the triple (g∗, π, 〈, 〉) is a
pseudo-Riemannian Poisson manifold.

(ii) If (P, π, 〈, 〉) is a Riemann–Poisson manifold and S is a symplectic leaf of P, then S is a
Kähler manifold.

(iii) If g is a Riemann–Lie algebra, then any even dimensional subalgebra of the orthogonal
subalgebra defined in [29] gives rise to a structure of a Riemann–Poisson Lie group on
any Lie group whose Lie algebra is g. Moreover, we get a structure of Lie bialgebra
(g, g∗) where both g and g∗ are Riemann–Lie algebras.

(iv) The underlying Lie algebra of a pseudo-Riemannian fermionic Novikov algebra is a
pseudo-Riemannian Lie algebra.

The notion of pseudo-Riemannian Lie algebras was first introduced in [27]. They are strongly
related to pseudo-Riemannian Poisson manifolds [28]. In fact, let P be a Poisson manifold
with a Poisson tensor π . A pseudo-metric of signature (p, q) on the cotangent bundle T ∗P
is a smooth symmetric contravariant 2-form 〈, 〉 on P such that, at each point o ∈ P, 〈, 〉o is
non-degenerate on T ∗

o P with signature (p, q). For any pseudo-metric 〈, 〉 on T ∗P , define a
contravariant connection by

2〈Dαβ, γ 〉 = σπ(α).〈β, γ 〉 + σπ(β).〈α, γ 〉 − σπ(γ ).〈α, β〉
+ 〈[α, β]π , γ 〉 + 〈[γ, α]π , β〉 + 〈[γ, β]π , α〉

where α, β, γ ∈ �1(P ) and the bundle map σπ : T ∗P → T P is defined by

β(σπ(α)) = π(α, β), ∀ α, β ∈ T ∗P,

and where the Lie bracket [·, ·] is given by

[α, β]π = Lσπ (α)β − Lσπ(β)α − d(π(α, β))

= iσπ (α)dβ − iσπ (β)dα + d(π(α, β)).

Furthermore, if

π(Dαdf, β) + π(α,Dβdf ) = 0 (6)

for any α, β ∈ �1(P ) and f ∈ C∝(P ), then the triple (P, π, 〈, 〉) is called a pseudo-
Riemannian Poisson manifold. When 〈, 〉 is positive definite we call the triple a Riemann–
Poisson manifold. Let f denote the restriction of 〈, 〉 on Ker π(o). Then, for any point o ∈ P

such that f is non-degenerate, the Lie algebra go obtained by linearizing the Poisson structure
at o is a pseudo-Riemannian Lie algebra.

Theorem 1. Let notations be as above. If the Levi-Civita contravariant connection D
mentioned above satisfies

DDαβγ = DDαγ β (7)

for any α, β, γ ∈ �1(P ), then go admits a Novikov structure.

Proof. For any x, y ∈ go and α, β ∈ �1(P ) such that αo = x and βo = y, it is easy to check
that

(Dαβ)o = xy.
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It follows that (
DDαβγ

)
o

= (Dαβ)oz = (xy)z

for any x, y, z ∈ go and α, β, γ ∈ �1(P ) such that αo = x and βo = y and γo = z. Thus, by
equation (7), we have

(xy)z = (xz)y, ∀ x, y, z ∈ go. (8)

It follows that

2f ((xy)z, d) = f ((xy)z, d) + f ((xy)z, d)

= −f (z, (xy)d) + f (d, (xy)z)

= −f (z, (xd)y) + f (d, (xz)y)

= f ((xd)z, y) − f ((xz)d, y)

= f ((xd)z − (xd)z, y)

= 0

for any x, y, z, d ∈ go. Therefore

(xy)z = 0

by the non-degeneracy of f . By the definition of pseudo-Riemannian Lie algebra,

(xy)z − x(yz) = −x(yz) = −y(xz) = (yx)z − y(xz). (9)

Namely go admits a Novikov structure. �

Corollary 1. The underlying Lie algebras of pseudo-Riemannian Novikov algebras are
pseudo-Riemannian Lie algebras.

Proof. Let (A, f ) be a pseudo-Riemannian Novikov algebra. By the proof of theorem 1, we
have that

(xy)z = 0

for any x, y, z ∈ A. It follows that

[xz, y] + [x, yz] = (xz)y − y(xz) + x(yz) − (yz)x

= x(yz) − y(xz)

= x(yz) − (xy)z − y(xz) + (yx)z

= 0.

Therefore, the underlying Lie algebra of A is a pseudo-Riemannian Lie algebra. �

Corollary 2. Pseudo-Riemannian Novikov algebras are fermionic Novikov algebras.

Therefore, the procedure to classify pseudo-Riemannian fermionic Novikov algebras in [30]
is suitable to classify pseudo-Riemannian Novikov algebras. Moreover, by the classification
of pseudo-Riemannian fermionic Novikov algebras up to dimension 4 in [30], we have

Corollary 3. Pseudo-Riemannian fermionic Novikov algebras up to dimension 4 are Novikov
algebras.

Remark 1. But for dimensions greater that four, we could neither prove that pseudo-
Riemannian fermionic Novikov algebras are Novikov algebras nor find a pseudo-Riemannian
fermionic Novikov algebra which is not a Novikov algebra.
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3. Pseudo-Riemannian Novikov algebras (A, f ) with dim AA = dim A − 1

It is well known that the classification of Novikov algebras in higher dimensions is also an
open problem. In fact, the classification in dimension 4 is not completely given. And the way
to classify pseudo-Riemannian fermionic Novikov algebras [30] is only a theoretical method.
In this section, we give a class of pseudo-Riemannian Novikov algebras over the field of
complex numbers.

Theorem 2. Let A be a Novikov algebra of dimension n with dim AA = n − 1 and f a
symmetric bilinear form on A. Then (A, f ) is a pseudo-Riemannian Novikov algebra if and
only if n is odd and there exists an (n − 1) × (n − 1) anti-symmetric matrix M with det M 	= 0
and a basis {e1, e2, . . . , en} of A such that either the product is given by

(ene1, . . . , enen−1) = (e1, . . . , en−1)M

and the bilinear form f is given by F = In or the product is given by

(ene1, . . . , enen) = (e1, . . . , en)M1

and the bilinear form f is given by

F =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
1 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

where

M1 =

⎛
⎜⎜⎜⎜⎜⎝

0 rown−1(M)

0 row1(M)

...
...

0 rown−2(M)

0 0

⎞
⎟⎟⎟⎟⎟⎠

.

Here F = (f (ei, ej )).

Firstly, we list some notations and establish some lemmas.
Let (A, f ) be a pseudo-Riemannian Novikov algebra with a basis {e1, e2, . . . , en} and{

ck
ij

}
the set of structure constants under the basis, i.e.,

eiej =
∑

k

ck
ij ek.

Denote the (form) character matrix by
⎛
⎜⎝

∑
k ck

11ek · · · ∑
k ck

1nek

...
. . .

...∑
k ck

n1ek · · · ∑
k ck

nnek

⎞
⎟⎠ .

Let AA denote the algebra defined by the linear span of the elements of the form xy for any
x, y ∈ A and define

LZ(A) = {x ∈ A | xy = 0,∀ y ∈ A},
RZ(A) = {x ∈ A | yx = 0,∀ y ∈ A},
(AA)⊥ = {x ∈ A | f (x, yz) = 0,∀ y, z ∈ A}.
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Lemma 1. Let (A, f ) be a pseudo-Riemannian Novikov algebra with dim A = dim AA + 1.
Then AA ⊂ LZ(A) and dim RZ(A) = 1.

Proof. Since (A, f ) is a pseudo-Riemannian Novikov algebra, then (xy)z = 0,∀ x, y, z ∈ A.
Namely, AA ⊂ LZ(A).

And it is easy to check that RZ(A) = (AA)⊥, which implies dim A = dim AA +
dim RZ(A). It follows that dim RZ(A) = 1. �

As a sequence, we have RZ(A) ∩ AA = 0 or RZ(A) ⊂ AA.

Lemma 2. Let (A, f ) be a pseudo-Riemannian Novikov algebra of dimension n with
dim AA = n − 1. If RZ(A) ∩ AA = 0, then n is odd and there exist an (n − 1) × (n − 1)

anti-symmetric matrix M with det M 	= 0 and a basis {e1, e2, . . . , en} of A such that the
product is given by

(ene1, . . . , enen−1) = (e1, . . . , en−1)M

and the bilinear form f is given by F = In.

Proof. Since RZ(A)∩AA = 0, then A = AA+RZ(A) and both f |RZ(A)×RZ(A) and f |AA×AA

are non-degenerate. Thus, there exists a basis {e1, . . . , en} of A such that the character matrix
is given by ⎛

⎜⎜⎜⎜⎝

0 · · · 0 0
...

. . .
...

...

0 · · · 0 0∑n−1
k=1 ck

n1ek · · · ∑n−1
k=1 ck

n(n−1)ek 0

⎞
⎟⎟⎟⎟⎠

and f is defined by

F =

⎛
⎜⎝

1 · · · 0
...

. . .
...

0 · · · 1

⎞
⎟⎠ ,

where en is a basis of RZ(A) and {e1, . . . , en−1} is a basis of AA. It follows that the product
is given by

(ene1, . . . , enen−1) = (e1, . . . , en−1)M, (10)

where

M =

⎛
⎜⎝

c1
n1 · · · c1

n(n−1)

...
. . .

...

cn−1
n1 · · · cn−1

n(n−1)

⎞
⎟⎠ .

Since f (enei, ej ) + f (ei, enej ) = 0, then

c
j

ni + ci
nj = 0.

It follows that M is an anti-symmetric matrix. Since dim AA = n − 1, then

det M 	= 0.

But det M = 0 if n is even. Thus n is odd. �

Lemma 3. Let (A, f ) be a pseudo-Riemannian Novikov algebra of dimension n with
dim AA = n − 1. If RZ(A) ⊂ AA, then n is odd and there exist an (n − 1) × (n − 1)

6
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anti-symmetric matrix M with det M 	= 0 and a basis {e1, e2, . . . , en} of A such that the
product is given by

(ene1, . . . , enen) = (e1, . . . , en)M1

and the bilinear form f is given by

F =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
1 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

where

M1 =

⎛
⎜⎜⎜⎜⎜⎝

0 rown−1(M)

0 row1(M)

...
...

0 rown−2(M)

0 0

⎞
⎟⎟⎟⎟⎟⎠

.

Proof. Since RZ(A) ⊂ AA, then f |RZ(A)×RZ(A) = 0. Furthermore, there exists a basis
{e1, . . . , en} of A such that the character matrix is given by

⎛
⎜⎜⎜⎝

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

0
∑n−1

k=1 ck
n2ek · · · ∑n−1

k=1 ck
nnek

⎞
⎟⎟⎟⎠

and f is defined by

F =

⎛
⎜⎜⎜⎜⎜⎝

0 0 · · · 0 1
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
1 0 · · · 0 0

⎞
⎟⎟⎟⎟⎟⎠

,

where e1 is a basis of RZ(A) and {e1, . . . , en−1} is a basis of AA. It follows that the product
is given by

(ene1, . . . , enen) = (e1, . . . , en)M1, (11)

where

M1 =

⎛
⎜⎜⎜⎝

0 c1
n2 · · · c1

nn

...
...

. . .
...

0 cn−1
n2 · · · cn−1

nn

0 0 0 0

⎞
⎟⎟⎟⎠ .

Since f (enei, ej ) + f (ei, enej ) = 0, then

c
j

ni + ci
nj = 0, i = 2, . . . , n, j = 2, . . . , n − 1;

c1
ni + ci

nn = 0, i = 2, . . . , n.
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It follows that

M =

⎛
⎜⎜⎜⎝

c2
n2 · · · c2

nn

...
. . .

...

cn−1
n2 · · · cn−1

nn

c1
n2 · · · c1

nn

⎞
⎟⎟⎟⎠

is anti-symmetric. Since dim AA = n − 1, then

det M 	= 0.

But det M = 0 if n is even. Therefore, n is odd. �

The proof of theorem 2:
⇒ The conclusion is clear thanks to Lemma 2 and 3.
⇐ For any case, (eiej )ek = 0. If i 	= n and j 	= n, ei(ej ek) = 0. Thus, A is a Novikov

algebra. Since det M 	= 0, then dim AA = n−1 = dim A−1. Obviously, f is non-degenerate.
And it is easy to check that f satisfies equation (5). �

4. Conclusions

According to the discussion in the previous sections, we obtain some conclusions on pseudo-
Riemannian Novikov algebras.

(i) The underlying Lie algebra of a pseudo-Riemannian Novikov algebra is the Lie algebra
obtained by linearizing the Poisson structure at a point of a Poisson manifold with a
compatible pseudo-metric and a certain condition (7) on the Levi-Civita contravariant
connection.

(ii) Not every Novikov algebra is a fermionic Novikov algebra, but pseudo-Riemannian
Novikov algebras are pseudo-Riemannian fermionic Novikov algebras. Moreover,
pseudo-Riemannian Novikov algebras are equivalent with pseudo-Riemannian fermionic
Novikov algebras in less than or equal to four dimensions.

(iii) If (A, f ) is a pseudo-Riemannian Novikov algebra with dim AA = dim A − 1 over C,
then dim A = 2k + 1. In fact, the structure of A is determined by an anti-symmetric
matrix.
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